STEM Beats - computer science

The High Stakes of Diversity for Washington State

May 18, 2017

Washington State may have a bright future if it maintains its dominance in the tech sector, but that could be a tall order. Lack of diversity in the STEM workforce could be the state’s Achilles heel, and that challenge has its roots in K-12.

It should surprise no one that STEM jobs pay in a state with companies like Microsoft and Boeing call home. STEM jobs in Washington State may well grow 15 percent in the coming decade, and the state’s STEM wage premium is enormous:

Washington State STEM Earnings

Unfortunately, people of color are least likely to reap these rewards. Notice for example, who earns degrees and certificates in computing or engineering:

WAshington State diversity of computing credentials

WAshington state diversity of engineering credentials

The green line in each chart represents minorities as a percentage of the college-aged population. The blue line represents the percentage of degrees and certificates that went to minorities. The wider the space between the two lines, the less well represented minorities are.

If you squint, you might seem some improvement in the last half-decade or so, but the gaps remain enormous. Black, Latino, and American Indian Washingtonians at state colleges and universities are still much less likely than their white or Asian peers to receive credentials in STEM.

The problem starts early, and it might get worse. For example, science scores for white eighth-graders in the state have climbed steadily since 2009, while those of black and Latino students have languished:

WAshington State science scores

Math scores follow similar trends, and black students fare the worst.

One possible reason: Underrepresented students of color seem to have less access to STEM learning opportunities. Teachers of African American students are less likely to say they have the resources they need to teach science:

Washington State resources to teach science

Access to lab equipment and supplies is also very uneven, and again students of color get the short end of the stick:

Washington State lab supplies

Even those students of color who have the potential to succeed on Advanced Placement tests in STEM often don’t take them:

Washington State Students who could thrive in AP don't take tests

Many may attend schools that don’t offer AP classes or their equivalents.

These disadvantages can add up over time and exacerbate the gaps. In Washington State, Blacks and Hispanics hold only seven percent of computing jobs and five percent of engineering jobs, even though they make up 15 percent of the state’s working-age population. For a state that will need all the STEM talent it can get, such inequities can be devastating.

Fortunately, STEM advocates in organizations like WashingtonSTEM have worked with state leaders to put STEM education at the forefront. The state has embraced robust new science standards. It aims to increase students’ access to computer science education. It is bringing STEM into early childhood education. It will take time for policies like these to affect the workforce, but they are a vital down-payment on the state’s prosperitys.  

To learn more about STEM in Washington State, check out our STEM Vital Signs page, or download our data presentation on the state.

Tags: computer science, engineering, diversity, jobs & workforce

Quick take: New Jersey's Computer Science Challenge

March 23, 2017

The impending talent shortage in computer science has been in the news for some time now. New Jersey could face a particularly sharp challenge.

A Quick look at our Vital Signs for the state reveals some troubling trends. No other state has seen a steeper decline in the number of degrees and certificates awardedn in computer science and related fields:

Declining degrees in computer science

This trend is perplexing, because demand for computing talent in the state remains robust. According to Economic Modeling Specialiststs, International, the state boasts one of the highest concentrations of computing jobs in the nation [1], and prospects for future growth look robust:

New Jersey STEM job growth

These conflicting trends do not bode well for New Jersey. That said, there may be glimmers of hope. The state is among the growing number that allows high schoolers to count computer science credits towards graduation requirements, and charts like the ones we share here will surely push state advocates to go even farther. After all, grim realities can be very compelling.

To dig into more data on STEM education in New Jersey, check out our New Jersey PowerPoint presentation.

[1] EMSI ranks the state eighth on this measure.

Tags: computer science

New Data: New Science Standards Are Boosting Engineering in Schools

February 21, 2017

Let's usher in this year's National Engineers Week with some good news. We've crunched some numbers, and it looks like efforts to make engineering part of the K-12 curriculum are beginning to pay off. 

Why? Our guess is that the Next Generation Science Standards (NGSS) are succeeding in their aim to integrate engineering and technology into science classrooms. These standards debuted in April 2013, and eight states adopted them by the end of that year: California, Delaware, Kansas, Kentucky, Maryland, Rhode Island, Vermont, and Washington State.

We had a look at data from the National Assessment of Educational Progress (NAEP) eighth-grade science test to see if schools in those eight states were teaching more engineering and technology. NAEP is a good tool for this exploration, because it surveys teachers and students about engineering and technology in the classroom, among other subjects.

What we found suggests that the Next Generation Science Standards are making a difference in schools. Between 2011 and 2015, teachers in the first states to adopt the standards increased the amount of class time they spent on engineering and technology:

NGSS is boosting class time

Sticklers might note that these gains could have occurred before April 2013, when the new standards burst upon the scene. Unfortunately, we can't settle that question definitively, because we lack data from that year. Still, the data we do have make a very strong case for NGSS. States that adopted the standards after 2013, or that never adopted them at all, saw smaller gains between 2011 and 2015.

One striking finding from our analysis is that the early adopter states started from behind. This pattern holds when we examine each of those states individually. In 2011, eighth-graders in our eight NGSS states were less likely than their peers in the nation as a whole to spend at least "some" time on engineering and technology. The picture looked dramatically different in 2015:

Individual states ramping up engineering & tech

What does it mean to spend "some" or "a lot" of time on engineering and technology? The results of another NAEP survey question offer at least some insight: "About how often do your science students discuss the kinds of problems that engineers can solve?" Here again, it appears that the NGSS states started well behind their peers but caught up:

NGSS boosting engineering in classrooms

These data reinforce our conclusion that teachers in NGSS states have grown more likely to focus on engineering. So far, so good. But are their students noticing the difference? The results of another NAEP survey item suggest that they are...but only up to a point.

NGSS students more likely to notice tech & engineering

Again, the NGSS states have made swifter progress than other states, but it seems a tad early to declare victory. Even though more than half (52 percent) of eighth-graders have science teachers who spend time on engineering and technology, far fewer (31 percent) seem to have noticed that fact.

Of course, students may still be learning about engineering and technology without realizing it, but their lack of awareness is troubling. After all, the Standards themselves specify that students should "understand the work of scientists and engineers" and "recognize" that what engineers do is "a creative endeavor." We know we haven't reached the goal line if so many students don't yet recognize engineering or technology when they see it.

On balance, though, we should be optimistic. We have strong evidence that standards can make a difference in the classroom, and in a relatively short time. In fact, engineering and technology are probably more pervasive now than our numbers suggest: almost two years have passed since the 2015 NAEP test, and more states have adopted the Standards.

The ultimate test of the Standards' success, of course, will be students' performance. That verdict will have to wait a bit longer. States are still developing tests that incorporate engineering--and they can use federal money to do it. And a representative sample of U.S. eighth-graders will take NAEP's next Technology and Engineering Literacy Assessment in 2018.

In the meantime, states and districts must continue the hard work of creating teaching materials, training teachers, and providing supplies to make engineering real in the classroom. If they succeed, future Engineers Weeks will bring even better news.

NOTE: We were not able to assess the impact of NGSS on another jurisdiction that adopted them before 2014: Washington, DC. Unfortunately, the 2015 science NAEP did not include state-level results for DC.

Tags: engineering, computer science, Next Generation Science Standards

Where are the Girls? STEM Career & Technical Education

January 12, 2017

Career and technical education is no longer the forgotten stepchild of education reform. The plight of jobless Americans took center stage in the turbulent Presidential election and raised the stakes for creating pathways to the middle class that don’t pass through the ivy-fringed gates of four-year colleges. In fact, jaded Congress watchers believe that CTE may be one of the few issues that will win bipartisan support in 2017.

That’s good news, but converts to the CTE cause will soon discover what CTE experts have known for a long time: namely, that the gender gaps in CTE’s STEM subjects are every bit as large as gender gaps in advanced math and science classes. In fact, those gaps are growing. To create broad opportunities for all their students, states must meet this problem head on.

To gauge the depth of the challenge, we reviewed federal data on high school students who concentrate in one of four critical STEM CTE fields: Health science, information technology, manufacturing, and science & technology.[1]

The lion’s share of female high schoolers concentrating in STEM CTE study health science, while male students are more evenly distributed:

Not surprisingly, high school girls dominate health science, but they are scarce in the other three career clusters.  The imbalance has gotten worse since 2007/08:

CTE Gender Imbalance is Growing

In science and engineering, girls held steady at a measly 25 percent. [1]

The news isn’t all bad for girls. They dominate in health sciences at a time when the healthcare sector is growing quickly and middle-skill jobs in health command a strong wage, at least for those who go on to earn a two-year technical degree.

Still, the gender imbalances should concern everyone. it’s more than a bit troubling that segregation by gender is getting worse. As fields like healthcare and computing continue to grow, we cannot draw most of our talent from only half of the population. In addition, a growing body of research tells us that organizations benefit from gender diversity in the workplace.

What’s to be done? As with most problems that really matter, the solutions are multifaceted, ranging from formally recruiting girls as early as middle schools to redesigning CTE curricula to avoid gender stereotypes and providing CTE teachers professional development on how to create a welcoming environment for all genders. 

(Check out this handy primer on professional development for a fuller list.)

Employers should continue making the case for gender balance while identifying employees who can serve as mentors: female employees in advanced manufacturing, for example, or male nurses. Governors can use their bully pulpit to advance campaigns that encourage gender diversity in middle-skill STEM jobs. Career and technical educators can work with their schools and districts to design targeted student recruitment strategies that break through the gender stereotypes.

Each state or community might find a different set of solutions, but none can afford to ignore the problem. State leaders must dedicate themselves to improving matters. The Carl D. Perkins Career and Technical Education Act of 2006, which is likely to be reauthorized this year, requires states to report on their progress in improving gender equity in CTE. It is not yet clear, however, whether states will suffer any federal consequences if they fail to reach their targets. There is little appetite for federal sanctions these days.

The solution is up to all of us. After all, everyone has a major stake in fostering a creative and robust middle skills workforce. We won’t get there if we allow boys and girls to go their separate ways.


[1] Health Science, Information Technology, Manufacturing, and “STEM” are career clusters in the National Career Clusters Framework. For the purposes of this analysis, we have renamed the STEM career cluster as “Science & engineering” to avoid confusion with our own definition of STEM, which includes the other three career clusters. The Science & engineering cluster includes “planning, managing and providing scientific research and professional and technical services (e.g., physical science, social science, engineering) including laboratory and testing services, and research and development services.”

[2] Data reveal that male and female enrollments more than doubled—growing by roughly 120 percent each. That said, girls did not improve their relative position.

Tags: Career Technical Education, women & girls, computer science, engineering

New data: Computer science for fun and profit

December 8, 2016

As we observe Computer Science Education Week, it’s worth celebrating some of the important ways in which computer science can enrich people’s lives. At Change the Equation, we often point to high salaries and low unemployment. Important as those advantages are, we should not forget another: computer science work is fun and satisfying.

Most of the fortunate few youngsters who take computer science in high school like it a lot. Eagle-eyed researchers at code.org uncovered some striking data buried in a recent CTEq/Amgen Foundation study on student attitudes towards computer science in high school:

Computer science and engineering rank right up there with the arts. It’s a shame that half of the nation’s high schoolers attend schools that don’t even offer computer science classes.

Computer science can be as gratifying on the job as it is in the classroom. When we reviewed international workforce and skill data, we found a compelling pattern: 

Rewards of complex computer skills

Why do people who use complex computers on the job find their work more satisfying? The data don't answer that question, but the answer may lie in the high demand for computer science skills. In the lean years that followed the great recession, newspapers were full of stories about recent college graduates working as baristas. They were dreadfully under-employed. 

A closer look at economic data revealed that those with bachelor's degrees in computer science were less likely than most of their peers to do jobs that didn't require high skills:

Recent computing grade weathered the recession

If your job doesn't make use of your skills, you probably won't be very satisfied. Computer science skills are in high demand.

Of course, high salaries also contribute to satisfaction, so we'd be remiss if we didn't end with this reminder:

CS is a gateway to a prosperous future:

No one said earning money can't be fun.

Tags: computer science

Pages